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Parametric Stability Margin for Multilinear Interval Control System
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Abstract

Recently, a necessary and sufficient condition to de-
termine the robust stability of a multilinear interval
control system has been reported in [1,2] as an exten-
sion of the well-known Box theorem [3] which deals
with the linear affine case. This paper introduces a
simple but computationally efficient algorithm, based
on the above result, to check the robust stability of
such systems. The method is also extended to find
the parametric stability margin of such a system.

1. ROBUST STABILITY

Let p := [p1 p2 -+ ;] a vector of real parameters
lying in the interval uncertainty set

'HIZ{P|P.-_SP='SP:', i=1)2:"'9l}' (1)
Consider the polynomial
6(s,p) := bo(p)+61(p)s+62(p)s*+- - +6a(p)s™ (2)

wherein the coefficients é;(p) are affine multilinear
functions of p. We shall refer to this type of polyno-
mial as a multilinear interval polynomial. It is easy
to show that any multilinear interval polynomial can
be rewritten as

6(s):= Y Qi(s) [] Ps(s) (3)
i=1 j=1

where P;;(s) are interval and Q:(s) are fixed poly-
nomials. The necessary and sufficient condition for
robust stability of the family é(s) under the assump-
tion that P;;(s) are independent is given below. Let
Kp,,(s) be the set of Kharitonov vertex polynomi-
als [4] associated with the interval polynomial P;;(s)
and Sp,;(9,A;) the set of Kharitonov segment poly-
nomials associated with interval polynomial B;(s).

Theorem 1. [1,2] The multilinear family 6(s) is
Hurwitz stable if and only if the set of manifolds M;
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for A; €[0,1] for all i.

Now let us define the new parameter vector
A=A Az e A, (5)

then each manifold in M; can be written as the poly-
nomial set

6(s,2) :i=6(A) +&:(Q)s +---, A €[0,1] (6)

where the coefficients §;(A) are multilinear functions
of A. Therefore, the problem of checking robust sta-
bility of a multilinear interval control system is re-
duced to checking the stability of the set of multilin-
ear polynomials shown in eq. (6), as A ranges over the
positive unit hypercube in the first quadrant.

Let us define the set
A= {6(s,2) | X €[0,1]}. (7
Let V denote the vertices of the A set,

Vi={d|X=0 o Xi=1, forall i} (8)
and Ay :={6(s,2) [ A€V} (9)

denotes the set of vertex polynomials.

Note that A is a continuum of polynomials whereas
Ay is a discrete set of polynomials and

Ay CA. (10)

Fixing s = s*, we let A(s*) denote the set of points
6(s*,A) in the complex plane obtained by letting A
range over [0, 1};

A(s") = {6(s"2) [ A€ [0, 1]} (11)

Likewise we have the discrete set of points in the com-

fori=1,2,---,m are Hurwitz stable where plex plane
M= Y. Qi(s) [[Kris(s) + Qi(s) I Spis(a 2) Ay (s*) = {6(s*,2) | A€ V}. (12)
i=Li#l i=1 j=1
(4) We now state the well known Mapping Theorem [6].
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Theorem 2. (Mapping Theorem [8]) Under the
assumption that §;(1) are affine multilinear functions
of A

co A(s*) = co Ay (s*) (13)
for each s* €T where co (-) indicates the convez hull

of a set (-).

This theorem shows that the image set of the mul-
tilinearly parametrized interval family, evaluated at
any point s* is contained in the convex hull of the
vertices evaluated at the same point. Although the
convex hull of the vertices overbounds this set we can
improve the accuracy of the approximation arbitrarily
by introducing additional vertices. This is illustrated
in Figures 1 to 4. The image set A(s*) is contained
in the convex hull of R(s*) = co Av/(s") as shown in
Figures 1 and 2. As shown in the subsequent figures
(Figures 3, 4) this approximation can be improved by
decomposing ) hypercube as a union of smaller boxes
and thereby introducing additional vertices as shown
in Figures A.1 and A.2.
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From this theorem, we can easily establish the follow-
ing corollary.

Corollary 1. The multilinear polynomial set A(s)
is Hurwilz stable if the convez hull of Av/(s) is Hur-
witz stable. If the dependence of the coefficients &;(p)
on p is linear the stability of A(s) is equivalent to
that of the convez hull of A (s).

If we define the set of convex combinations of the
vertex polynomials in Av(s) by

E(s) := {mi;6:(s) + (1 — i;)8;(s) | 5 €[0,1] and

6i(s),6;(s) € Ay}, (14)
the stability of co Av/(s) is equivalent to the stability
of E(s). Since the set E(s) consists of line segments
joining every pair of vertices in Avs(s), its stability
can be easily verified by the Segment Lemma [7]. The
segment lemma basically determines if the phase dif-
ference of a pair of stable vertex polynomials reaches

180 degrees at some w. If the phase difference does
not reach 180° for any w, the line segment joining
the two vertices is Hurwitz stable. This condition is
called the Phase Condition.

Using the above concepts we can easily prove the fol-
lowing. Let A(jw) denote the complex plane image
of the set A(s) evaluated at s = jw.

Theorem 3. The sei of multilinear polynomials
A(s) is Hurwitz stable if i) for some w € [0,00),
0 ¢ A(jw) and ii) the set of all corresponding line
segments E(s) is Hurwitz stable.

This theorem along with the previously given proce-
dure for approximating the image set can be used to
develop an efficient computational technique to check
robust stability. We can also extend this result to
the computation of the parametric stability margin
of the multilinear interval control systems. This is
done next.

2. PARAMETRIC STABILITY MARGIN

Consider a Hurwitz polynomial of the form
6(s) =3 Qi(s) [] Ps(e) (15)
i=1 j=1
where Q;(s) are fixed and
P,;(s) = P?j +P.'1,'3 +P?,'32 +- (16)

Let us assume that coefficients pf; for k = 0,1,2,---
are subject to variations. If we assume the variations
in coefficients are bounded as

pfj € Wjo - wfjf! p?jo + w?jd) € Z 0 (17)

for a fixed value of the weights w;; with p!‘,-u being the
nominal values of the parameters, then the paramet-
ric stability margin is defined as the maximum value
€* so that the multilinear polynomial é(s) remains
Hurwitz stable for all € € [0,¢*).

Let us recall the manifolds shown in eq. (4). From
Theorem 1, the parametric stability margin of the
polynomial in eq. (15) is equivalently defined as

min {¢ | max{e | Mf € H,VX €[0,1]},
lemked™}. (18)
Note that each manifold in M; has the form of
Qu( )KL () KB (9) - Ky () + -
+Qi-1(9)Kp 0 () Kp 0 (0) - KpTiy (8)
+Qu ()82 (3, 21)587 (3, Aa) -+~ SEy (8, 2r)
+Que1 () KR () Kpin(s) -+ Kot () + -
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where K:,:; (s) is the k** Kharitonov polynomial and
Sf,: (s,)) is the k*h segment polynomial associated
with an interval polynomial P;;(s), respectively.

Using the sufficient condition developed in Theo-
rem 3, we can develop the following computational
procedure.For some ¢, if all the corresponding line
segments in E(s) are Hurwitz stable for all € € [0, ),
then the actual parametric stability margin €* is al-
ways greater than or equal to €. However, if we in-
troduce additional vertex points the approximation
of the image set by the convex hull of the vertices im-
proves and so the difference ¢* — € becomes smaller.
This permits us to compute the parametric stability
margin with arbitrary accuracy depending upon how
much we want to refine the approximation and how
much computational burden may be taken. From the
above considerations, a bisection algorithm is devel-
oped as follows:

Bisection Method: €
For each fixed ¢
Find all manifolds for
(Ali"'lAf) € {(0)"')0)1')(11""1)}
IF all E(s) satisfy phase condition
THEN forward bisection
ELSE backward bisection
ENDIF
Bisection Method stops when the section piece
is small enough.

3. NUMERICAL EXAMPLES

Ezample 1. Consider the feedback system shown in
Figure B.

O C(s) P(s) .

Figure B. Feedback System.

_ n(s) _  mstng
PO) = 90 T Gt datd
2
c(s) n.(s) = s+2s+1

d.(s) " s +253+2s2+s
with its plant coefficient variations being bounded by

n, € [ny,nf] with the nominal value n = .15
no € [ng,n¢] with the nominal value nJ = .95
d; € [d; ,d]] with the nominal value d3 = .95

dy € [d],d}] with the nominal value df = 1.9
do € [d5,d}] with the nominal value dg = 2.0
and [ny7,n] =[nd — wa,&n) + wn,¢€
[ngimg] = [nG — W€ 110 + W, ]
[d7,d7] = (& — waye,d3 + wy, €]
[d;,df] = [ — wa, 6,0} + wa, €]
[d(;idg] = [£ - wdoeidg + wdoe]‘

Then the characteristic polynomial is given by
I = {d(s)d(s) + n(s)ne(s)}

which shows that the parameters are entering into its
coefficient linearly. As we stated in Corollary 1, the
phase condition becomes necessary and sufficient in
this case. The sets of Kharitonov polynomials asso-
ciated with n(s,€) and d(s,¢€) are defined as follows:

Kl(s,e)=ng +nys, K2(s,e)=ng + nia
K3(s,e)=ng +nys, K:("re) = "’0+ tns

Ki(s = & +dpotdls
Ki(s,e) = d, +djs+dfs?
K3(s,e)= dy +d;s+d; s
Ki(s,e)= df +ds+d;4%

Thus we need to check the phase condition of the
following set of vertex pairs: E := E; U E; where

Ey = {(Ki(s,€)d.(s) + Ki(s,e)n.(s),
Ki(s,€)d-(s) + K (s, €)nc(s))}
E; := {(Kﬁ(s,e)dﬂ(s) + K (s, €)n.(s),

K5(s,€)d.(s) + K (s,€)nc(a))}
for i=1,2,3,4 and
(i,k) € {(1,2),(1,3),(2,3),(3,4)} -

Using a bisection method on €, we have the paramet-
ric stability margin:

€ =max{e | E€H, Vee[0,e]} =0.146.

Ezample 2. Consider the following interconnected
feedback system shown in Figure C. Let

Q(s) Py(s) Py(s)

Figure C. Interconnected Feedback System.

Qi(s) s+2
Qg(a) - s+1

Q(s) =



_ Pyl s +s+l
Pie) = Py(s) S +as?+4dstao
3 2
Py(s) = Py3(s) _ 6.65° + 13.5s% 4 15.55 + 20.4

Py(s) 83+ bys? +3.5s+24

and let the set of parameters p = [a2, 6o, b2] vary as
follows:

a; € [a7,a}]  with the nominal value a3 = 3.0
ao € [ay,a]  with the nominal value ag = 2.0
b, € [b7,bf]  with the nominal value b} = 3.5

where [a7,a]] = [a] — wa,€,a0 + Wa,¢]
[ag!ag] = [ag - wﬂu‘»ag + wﬂoel
[b7,b3] = [83 — we,€, b3 + wr, €]

with [w,,, Wa,, Ws,] = [1,1,1]. The Kharitonov ver-
tex and segment polynomials as follows:

K}’n(s’ 6) = K}z’u(‘,’ 6) = Kla’u("’e)
Kp,,(s,€) = Pu(s€)

K} (s,€) = Kp,(s,€)= K3 ,(s,€)

= Kp,(s,€) = Pua(s,€)
K}l’n("’f) = K?’,,(” €)

= aj +4s+afs?+s°
K} (s,€) = Kp, (s€)

= ag+4s+a;32+33
Sh,(s,€) = Kp, (s,€)

53,.(5,€) = Sp,(5:€)
AKp, (s,€) + (1 - A)K3, (3,€)

Sp(5,€) = K3, (s:¢€)
Kb (09 = Kb(5,9

= 24+43.5s+bFs*+5°
K} (s,¢) = Kp, (s€)

= 24+35s+b7s% +5°
Sp.(8€) = Kp,.(s,€)

S%..(s€) = S5p,,(s,€)
= AKp,,(s,€)+(1-A)Kp,,(3,¢)
St..(s,) = K3, (s€)

The sets of manifolds to be checked for stability are:

M = {Ql(S)Pu(S,E)Plz(J,E) +
Qz(s) MK}, (3,€) + (1 — A )KR, (s,€)]
[AzK}:"(S,E) + (1 - AQ)K;"(S,E)]}

We now solve the problem of checking these manifolds
by overbounding this set by the convex hull of the
vertices. After eliminating all duplicated segments,
we have the following line segments which need to be
checked. Note that the line segments listed below are

functions of € and our objective is to find the max-
imum value of € so that all E(s,¢") remain Hurwitz
for all € € [0,¢*}.

Ei(s,¢) = (Qi(8)Pri(s,€)Pra(s,€) +
Qa(s)K3,,(5,)Kp,, (3,¢),

Q1(s)Pr1(s,€)Pra(s,€) +
Q2(s)K3,,(3,)Kpy, (3€))

Ei(s,e) = (Qu(s)Pui(s,€)Pra(s,€) +

Qz(")Kg’n(” E)K}a’"("t €),
Q1(8)P11(s,€)Pra(s,€) +
Q2(s)Kp,, (5, €) K5, (s,€))
Es(s,e) = (Qi(s)Pri(s,€)Pra(s,€) +
QZ(")K?’,;("! G)K?’n("xf),
Q1(s)P11(3,€)Pya(s,€) +
Qz(s)Kp,, (3,€)Kp,,(s,€))
(@1(3)P11(s, €) Pi2a(s,€) +
QZ(’)K;“("’G)K};,(’:‘))
Q1(3)P11(s,€)Piz(s,€) +
Q2(s)Kp, (8, K3,,(s,€))
(Q1(8)Pr1(s, €)Prz(s,€) +
QZ(")KE’;;("se)K}I’"("’G)'
Q1(8)P11(s,€)P1a(s,€) +
Q:z(s)K},, (3, €)Kp,,(5,€))
(Q1(3) Py (s, €) Pr2(s,€) +
QZ(")K}’H("I E)K:i”n(": 5)1
Q1(s)P11(s,€)Pra(s,€) +
QZ(")K}’"(’! G)K};"(a, €)).
Using a simple bisection method based algorithm we
have
€ max{e|E;(s,€) € H,Ve € [0,¢*],i=1,---,6}
0.6305.

EQ(’,G)

Es(s,t')

Eﬁ(a,e)

4. CONCLUDING REMARKS

A simple technique to determine the parametric sta-
bility margin for multilinearly dependent interval con-
trol system has been given. The method is based
on the multilinear generalization of the Box theorem.
The method is powerful and reduces computational
burden significantly. In fact, if used in conjunction
with the Segment Lemma it completely eliminates
frequency sweeping. Furthermore, by adding addi-
tional vertices one may achieve an arbitrarily high
level of accuracy.
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Figure 1: Image Set (w = 0.85)
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Figure 2: Convex Hull (w = 0.85)

Q8

06

o4}

0.2}

02F

04}

0.6}

08}

Real

Figure 3: Image Set {(w = 0.85)
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Figure 4: Convex Hull (w = 0.85)



